Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.105
Filtrar
1.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622850

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Assuntos
Proteínas Tirosina Quinases , Sarcoma , Feminino , Humanos , Adulto , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ubiquitina Tiolesterase/genética , Proteínas de Transporte Vesicular/genética
2.
Nat Commun ; 15(1): 2627, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521787

RESUMO

IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1ß inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Fibrose , Inflamação , Leucócitos Mononucleares/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Aging (Albany NY) ; 16(6): 5526-5544, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517383

RESUMO

Ubiquitin-specific protease 36 (USP36) has been reported to exhibit oncogenic effects in various malignancies, but the function of USP36 in colon cancer progression remains indefinite. Herein, we aimed to determine the role and mechanism of USP36 in malignant phenotypes of colon cancer cells and explore the potential drug targeting USP36. Bioinformatics analyses indicated that USP36 is highly expressed and significantly related to tumor stages in colon cancer. Besides, USP36 was further up-regulated in oxaliplatin (Oxa)-resistant colon cancer cells. Colony formation, Edu staining, Transwell, wound healing, sphere formation, and CCK-8 assays were conducted and showed that the proliferation, Oxa-resistance, migration, stemness, and invasion of HCT116 cells were promoted after overexpressing USP36, while suppressed by USP36 knockdown. Mechanically, USP36 enhances c-Myc protein stabilization in HCT116 cells via deubiquitination. AutoDock tool and ubiquitin-AMC hydrolysis assay identified cinobufotalin (CBF), an anti-tumor drug, maybe a USP36 inhibitor by inhibiting its deubiquitination activity. CBF significantly prohibited proliferation, migration, invasion, and stemness of HCT116 cells and reversed Oxa-resistance, whereas enforced expression of USP36 blocked these effects. Moreover, in vivo analyses confirmed the oncogenic role of USP36 and the therapeutic potential of CBF in the malignancy of colon cancer. In conclusion, CBF may be a promising therapeutic agent for colon cancer due to its regulation of the USP36/c-Myc axis.


Assuntos
Bufanolídeos , Neoplasias do Colo , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Células HeLa , Proliferação de Células
4.
Front Immunol ; 15: 1353138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529289

RESUMO

Introduction: BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results: In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion: In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.


Assuntos
Linfócitos B , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Animais , Camundongos , Anticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
5.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478109

RESUMO

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Assuntos
Células Endoteliais , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , 60489 , Barreira Hematoencefálica/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Fatores de Transcrição SOXF/genética , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
6.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468288

RESUMO

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
7.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547292

RESUMO

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Assuntos
Proliferação de Células , Mitose , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Humanos , Proliferação de Células/genética , Instabilidade Genômica , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , 60688/metabolismo , Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos
8.
Radiol Imaging Cancer ; 6(2): e230063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456787

RESUMO

Purpose To investigate the prevalence of FLCN, BAP1, SDH, and MET mutations in an oncologic cohort and determine the prevalence, clinical features, and imaging features of renal cell carcinoma (RCC) associated with these mutations. Secondarily, to determine the prevalence of encountered benign renal lesions. Materials and Methods From 25 220 patients with cancer who prospectively underwent germline analysis with a panel of more than 70 cancer-predisposing genes from 2015 to 2021, patients with FLCN, BAP1, SDH, or MET mutations were retrospectively identified. Clinical records were reviewed for patient age, sex, race/ethnicity, and renal cancer diagnosis. If RCC was present, baseline CT and MRI examinations were independently assessed by two radiologists. Summary statistics were used to summarize continuous and categorical variables by mutation. Results A total of 79 of 25 220 (0.31%) patients had a germline mutation: FLCN, 17 of 25 220 (0.07%); BAP1, 22 of 25 220 (0.09%); SDH, 39 of 25 220 (0.15%); and MET, one of 25 220 (0.004%). Of these 79 patients, 18 (23%) were diagnosed with RCC (FLCN, four of 17 [24%]; BAP1, four of 22 [18%]; SDH, nine of 39 [23%]; MET, one of one [100%]). Most hereditary RCCs demonstrated ill-defined margins, central nonenhancing area (cystic or necrotic), heterogeneous enhancement, and various other CT and MR radiologic features, overlapping with the radiologic appearance of nonhereditary RCCs. The prevalence of other benign solid renal lesions (other than complex cysts) in patients was up to 11%. Conclusion FLCN, BAP1, SDH, and MET mutations were present in less than 1% of this oncologic cohort. Within the study sample size limits, imaging findings for hereditary RCC overlapped with those of nonhereditary RCC, and the prevalence of other associated benign solid renal lesions (other than complex cysts) was up to 11%. Keywords: Familial Renal Cell Carcinoma, Birt-Hogg-Dubé Syndrome, Carcinoma, Renal Cell, Paragangliomas, Urinary, Kidney © RSNA, 2024.


Assuntos
Carcinoma de Células Renais , Cistos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Mutação em Linhagem Germinativa/genética , Prevalência , Estudos Retrospectivos , Proteínas Supressoras de Tumor/genética , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Cistos/complicações , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética
9.
Oncogene ; 43(12): 899-917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317006

RESUMO

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Assuntos
Anexina A2 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Via de Sinalização Wnt/genética , Neoplasias Esofágicas/patologia , Proliferação de Células/genética , Acetiltransferases/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Histona Acetiltransferases/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Anexina A2/metabolismo
10.
BMC Cancer ; 24(1): 237, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383348

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with strong invasiveness and poor prognosis. Previous studies have demonstrated the significant role of USP14 in various solid tumors. However, the role of USP14 in the regulation of HCC development and progression remains unclear. METHODS: We discovered through GEO and TCGA databases that USP14 may play an important role in liver cancer. Using bioinformatics analysis based on the Cancer Genome Atlas (TCGA) database, we screened and identified USP14 as highly expressed in liver cancer. We detected the growth and metastasis of HCC cells promoted by USP14 through clone formation, cell counting kit 8 assay, Transwell assay, and flow cytometry. In addition, we detected the impact of USP14 on the downstream protein kinase B (AKT) and epithelial-mesenchymal transition (EMT) pathways using western blotting. The interaction mechanism between USP14 and HK2 was determined using immunofluorescence and coimmunoprecipitation (CO-IP) experiments. RESULTS: We found that sh-USP14 significantly inhibits the proliferation, invasion, and invasion of liver cancer cells, promoting apoptosis. Further exploration revealed that sh-USP14 significantly inhibited the expression of HK2. Sh-USP14 can significantly inhibit the expression of AKT and EMT signals. Further verification through immunofluorescence and CO-IP experiments revealed that USP14 co-expressed with HK2. Further research has found that USP14 regulates the glycolytic function of liver cancer cells by the deubiquitination of HK2. USP14 regulates the autophagy function of liver cancer cells by regulating the interaction between SQSTM1/P62 and HK2. CONCLUSIONS: Our results indicate that USP14 plays a crucial role in the carcinogenesis of liver cancer. We also revealed the protein connections between USP14, HK2, and P62 and elucidated the potential mechanisms driving cancer development. The USP14/HK2/P62 axis may be a new therapeutic biomarker for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
11.
Int J Biol Sci ; 20(4): 1492-1508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385089

RESUMO

Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in cholangiocarcinoma (CCA) has not been explored. Herein, based on The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases, we found that ubiquitin-specific protease 21 (USP21) was upregulated in CCA, high USP21 level was associated with poor prognosis. In vivo and in vitro, we identified USP21 as a master regulator of CCA growth and maintenance, which directly interacted with deubiquitinates and stabilized the heat shock protein 90 (HSP90) through K48-linked deubiquitination, and in turn, this stabilization increased HIF1A expression, thus upregulating key glycolytic enzyme genes ENO2, ENO3, ALDOC, ACSS2, and then promoted aerobic glycolysis, which provided energy for CCA cell proliferation. In addition, USP21 could directly stabilize alpha-Enolase 1 (ENO1) to promote aerobic glycolysis. Furthermore, increased USP21 level enhanced chemotherapy resistance to the gemcitabine-based regimen. Taken together, we identify a USP21-regulated aerobic glycolysis mechanism that involves the USP21/HSP90/HIF1A axis and USP21/ENO1 axis in CCA tumorigenesis, which could serve as a potential target for the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/metabolismo , Proliferação de Células/genética , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Glicólise/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
12.
Oncogene ; 43(15): 1087-1097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383726

RESUMO

BRCA1-associated protein 1 (BAP1) has emerged as a major tumor suppressor gene in diverse cancer types, notably in malignant pleural mesothelioma (DPM), and has also been identified as a germline cancer predisposition gene for DPM and other select cancers. However, its role in the response to DNA damage has remained unclear. Here, we show that BAP1 inactivation is associated with increased DNA damage both in Met-5A human mesothelial cells and human DPM cell lines. Through proteomic analyses, we identified PRKDC as an interaction partner of BAP1 protein complexes in DPM cells and 293 T human embryonic kidney cells. PRKDC encodes the catalytic subunit of DNA protein kinase (DNA-PKcs) which functions in the nonhomologous end-joining (NHEJ) pathway of DNA repair. Double-stranded DNA damage resulted in prominent nuclear expression of BAP1 in DPM cells and phosphorylation of BAP1 at serine 395. A plasmid-based NHEJ assay confirmed a significant effect of BAP1 knockdown on cellular NHEJ activity. Combination treatment with X-ray irradiation and gemcitabine (as a radiosensitizer) strongly suppressed the growth of BAP1-deficient cells. Our results suggest reciprocal positive interactions between BAP1 and DNA-PKcs, based on phosphorylation of BAP1 by the latter and deubiquitination of DNA-PKcs by BAP1. Thus, functional interaction of BAP1 with DNA-PKcs supports a role for BAP1 in NHEJ DNA repair and may provide the basis for new therapeutic strategies and new insights into its role as a tumor suppressor.


Assuntos
Neoplasias , Proteômica , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
13.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180476

RESUMO

K63-linked ubiquitin chains attached to plasma membrane proteins serve as tags for endocytosis and endosome-to-lysosome sorting. USP8 is an essential deubiquitinase for the maintenance of endosomal functions. Prolonged depletion of USP8 leads to cell death, but the major effects on cellular signaling pathways are poorly understood. Here, we show that USP8 depletion causes aberrant accumulation of K63-linked ubiquitin chains on endosomes and induces immune and stress responses. Upon USP8 depletion, two different decoders for K63-linked ubiquitin chains, TAB2/3 and p62, were recruited to endosomes and activated the TAK1-NF-κB and Keap1-Nrf2 pathways, respectively. Oxidative stress, an environmental stimulus that potentially suppresses USP8 activity, induced accumulation of K63-linked ubiquitin chains on endosomes, recruitment of TAB2, and expression of the inflammatory cytokine. The results demonstrate that USP8 is a gatekeeper of misdirected ubiquitin signals and inhibits immune and stress response pathways by removing K63-linked ubiquitin chains from endosomes.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ubiquitina Tiolesterase , Endossomos/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Ubiquitina/genética , Humanos , Ubiquitina Tiolesterase/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
14.
Neoplasma ; 71(1): 13-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215036

RESUMO

Cancer stem cells (CSCs) have emerged as crucial contributors to tumor relapse and chemoresistance, making them promising targets for treating cancers like colorectal cancer (CRC). However, the mechanisms governing CSC maintenance in CRC remain poorly characterized. In this study, we investigated the potential role of ubiquitin-specific protease 36 (USP36) in CRC. Our bioinformatic analysis revealed a significant upregulation of USP36 expression in CRC, and high USP36 levels were associated with poor prognosis in CRC patients. Furthermore, we observed an increase in USP36 expression in CRC cell lines. Knockdown of USP36 resulted in reduced viability, cell cycle arrest, increased apoptosis, and impaired migration and invasion in CRC cells. Additionally, the colony formation and sphere formation ability, as well as the expression of stem cell markers and pluripotent transcription factors, were substantially reduced in USP36-deficient CRC cells. These findings emphasize the role of USP36 as an oncogene in CRC, highlighting its potential as a therapeutic target for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Células HeLa , Regulação para Cima , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/uso terapêutico
15.
Mod Pathol ; 37(3): 100420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185249

RESUMO

9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Biomarcadores Tumorais/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/genética , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Deleção de Sequência , Ubiquitina Tiolesterase/genética
16.
J Mol Diagn ; 26(4): 257-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280423

RESUMO

Low-grade serous carcinoma (LGSC) may develop from serous borderline tumor (SBT) tissue, where the micropapillary type (mSBT) presents the highest risk for progression. The sensitivity of LGSC to standard chemotherapy is limited, so alternative therapeutic approaches, including targeted treatment, are needed. However, knowledge about the molecular landscape of LGSC and mSBT is limited. A sample set of 137 pathologically well-defined cases (LGSC, 97; mSBT, 40) was analyzed using capture DNA next-generation sequencing (727 genes) and RNA next-generation sequencing (147 genes) to show the landscape of somatic mutations, gene fusions, expression pattern, and prognostic and predictive relevance. Class 4/5 mutations in the main driver genes (KRAS, BRAF, NRAS, ERBB2, USP9X) were detected in 48% (14/29) of mSBT cases and 63% (47/75) of LGSC cases. The USP9X mutation was detected in only 17% of LGSC cases. RNA next-generation sequencing revealed gene fusions in 6 of 64 LGSC cases (9%) and 2 of 33 mSBT cases (9%), and a heterogeneous expression profile across LGSC and mSBT. No molecular characteristics were associated with greater survival. The somatic genomic and transcriptomic profiles of 35 mSBT and 85 LGSC cases are compared for the first time. Candidate oncogenic gene fusions involving BRAF, FGFR2, or NF1 as a fusion partner were identified. Molecular testing of LGSC may be used in clinical practice to reveal therapeutically significant targets.


Assuntos
Compostos Azo , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Mutação , Perfilação da Expressão Gênica , Genômica , RNA , Gradação de Tumores , Ubiquitina Tiolesterase/genética
17.
Gynecol Oncol ; 182: 156-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266402

RESUMO

OBJECTIVE: This study explored promising prognostic and immune therapeutic candidate biomarkers for OC and determined the expression, prognostic value, and immune effects of UCHL3. METHODS: UCHL3 expression and clinical data were investigated using bioinformatic analysis. CCK8 and transwell assays were conducted to evaluate the impact of UCHL3 on proliferation and migration, and the effects of UCHL3 were further validated in a mouse model. Univariate and least absolute shrinkage and selection operator regression analyses were performed to construct a novel UCHL3-related prognostic risk model. Gene set enrichment analysis (GSEA) and immune analysis were performed to identify the significantly involved functions of UCHL3. Finally, bioinformatic analysis and immunohistochemistry were performed to explore the effect of UCHL3 on chemotherapy. RESULTS: UCHL3 expression was upregulated and associated with worse overall survival (OS) in OC. UCHL3 depletion repressed cell proliferation and migration both in vitro and in vivo. Furthermore, 237 genes were differentially expressed between the high and low UCHL3 expression groups. Subsequently, a UCHL3-related prognostic signature was built based on six prognostic genes (PI3, TFAP2B, MUC7, PSMA2, PIK3C2G, and NME1). Independent prognostic analysis suggested that age, tumor mutational burden, and RiskScore can be used as independent prognostic factors. The immune infiltration analysis and GSEA suggested that UCHL3 expression was related to the immune response. In addition, UCHL3 expression was higher in platinum-resistant OC patients than in platinum-sensitive patients. UCHL3 overexpression was associated with poorer OS. CONCLUSION: UCHL3 overexpression contributes to aggressive progression, poor survival, and chemoresistance in OC. Therefore, UCHL3 may be a candidate prognostic biomarker and potential target for controlling progression and platinum resistance in OC.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Biomarcadores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Agressão , Proliferação de Células , Biologia Computacional , Platina , Prognóstico , Ubiquitina Tiolesterase/genética
18.
Placenta ; 146: 50-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176298

RESUMO

INTRODUCTION: The dysregulation of deubiquitination has been shown to affect the development of pre-eclampsia (PE). A disintegrin and metalloprotease 9 (ADAM9) plays roles in diverse physiological contexts, including PE. Here, this study aimed to investigate whether ADAM9 regulated trophoblast cell dysfunction through ubiquitin-specific protease 22 (USP22) deubiquitinase-mediated deubiquitination during PE. METHODS: Levels of genes and proteins were tested via qRT-PCR and western blotting assays. Cell proliferation, migration, and invasion were detected using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and wound healing assays, respectively. Epithelial-mesenchymal transition related markers were assayed using western blotting. Proteins between USP22 and ADAM9 were identified by co-immunoprecipitation assay. RESULTS: ADAM9 was highly expressed in PE patients, functionally, ADAM9 overexpression weakened the proliferation, migration, invasion, and EMT progression in trophoblast cells. Mechanistically, the deubiquitinase USP22 removed ubiquitination on ADAM9 and maintained its stability. Forced expression of USP22 also suppressed the proliferation and mobility in trophoblast cells. Moreover, the regulatory effects of USP22 on trophoblast cells were reversed by ADAM9 silencing. In addition, USP22 interacted with ADAM9 to regulate the activation of Wnt/ß-catenin pathway. DISCUSSION: ADAM9 was deubiquitinated and stabilized by USP22 and then suppressed the proliferation, migration, invasion, and EMT progression in trophoblast cells, indicating a new pathway of USP10/RUNX1 axis in PE process.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Via de Sinalização Wnt , Transição Epitelial-Mesenquimal , Proliferação de Células/genética , Movimento Celular/genética , MicroRNAs/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
19.
Diagn Cytopathol ; 52(4): 211-216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243885

RESUMO

BACKGROUND: Mesothelioma is a malignant neoplasm with a poor survival rate. We aimed to investigate the importance of BAP1, MTAP (IHC), and p16/CDKN2A homozygous deletion (FISH) in cytologic material obtained from pleural effusion sampling, which is a less invasive procedure in the diagnosis of mesothelioma. METHODS: Our study discussed pleural cytology samples of cases with histopathologically proven mesothelioma diagnoses between 2017 and 2022. As the control group, materials that had pleural effusion sampling for other reasons and reactive mesothelial hyperplasia were included in the study. Cell blocks prepared from these materials were subjected to fluorescent in situ hybridization for p16/CDKN2A homozygous deletion and immunohistochemistry for BAP1 and MTAP. RESULTS: The specificity of the P16/CDKN2A homozygous deletion in diagnosing mesothelioma is 100%. Its sensitivity is 68.75%. The specificity of BAP1 immunohistochemical nuclear expression loss is 95%, while the sensitivity is 60%. Loss of nuclear expression of MTAP alone has the lowest specificity and sensitivity, with a specificity of 86% and a sensitivity of 43%. The highest sensitivity is reached when BAP1 loss and p16/CDKN2A homozygous deletion are evaluated together, increasing to 81%. The specificity is 95%. CONCLUSION: It has been determined that any marker alone cannot be used for a definitive mesothelioma diagnosis in pleural effusion cytological specimens; however, sensitivity increases in some combinations. The combination of BAP1 immunohistochemistry and p16/CDKN2A homozygous deletion detected by FISH, which has a higher specificity and sensitivity, can be routinely used in the diagnosis of mesothelioma under the guidance of clinical and radiologic information.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Mesoteliais , Derrame Pleural , Humanos , Citologia , Homozigoto , Hibridização in Situ Fluorescente , Deleção de Sequência , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma Maligno/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
20.
Int J Biol Sci ; 20(3): 953-967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250150

RESUMO

Deubiquitinase (DUB) dysregulation is closely associated with multiple diseases, including tumors. In this study, we used data from The Cancer Genome Atlas and Gene Expression Omnibus databases to analyze the expression of 51 ubiquitin-specific proteases (USPs) in gastric cancer (GC) tissues and adjacent non-neoplastic tissues. The Kaplan-Meier Plotter database was used to analyze the association of the differentially expressed USPs with the overall survival of patients with GC. The results showed that five USPs (USP5, USP10, USP13, USP21, and USP35) were highly expressed in GC tissues and were associated with poor prognosis in patients with GC. Because the epithelial-mesenchymal transition enables epithelial cells to acquire mesenchymal features and contributes to poor prognosis, we investigated whether these USPs had regulatory effects on the key epithelial-mesenchymal transition transcription factor Snail1. Our results showed that USP35 exhibited the most significant regulation on Snail1. Overexpression of USP35 increased and its knockdown decreased Snail1 protein levels. Mechanistically, USP35 interacted with Snail1 and removed its polyubiquitinated chain, thereby increasing its stability. Furthermore, USP35 promoted the invasion and migration of GC cells depending on its DUB activity. USP35 knockdown exhibited the opposite effect. Snail1 depletion partially abrogated the biological effects of USP35. Experiments using nude mouse tail vein injections indicated that wild-type USP35, but not the catalytically inactive USP35-C450A mutant, dramatically enhanced cell colonization and tumorigenesis in the lungs of mice. In addition, USP35 positively correlated with Snail1 expression in clinical GC tissues. Helicobacter pylori infection increased USP35 and Snail1 expression levels. Altogether, we found that USP35 can deubiquitinate Snail1 and increase its expression, thereby contributing to the malignant progression of GC. Therefore, USP35 may serve as a viable target for GC treatment.


Assuntos
Endopeptidases , Infecções por Helicobacter , Fatores de Transcrição da Família Snail , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Endopeptidases/genética , Camundongos Nus , Neoplasias Gástricas/genética , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética , Fatores de Transcrição da Família Snail/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...